1

Third Semester B.E. Degree Examination, December 2011 **Engineering Mathematics**

Max. Marks:100 Time: 3 hrs.

> Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

Find a Fourier series to represent $f(x) = \begin{cases} 0 & -\pi \le x \le 0 \\ x^2 & 0 \le x \le \pi \end{cases}$. (06 Marks)

Find half range cosine series of $f(x) = 1 - \frac{x}{l}$ in (0, l). (07 Marks)

c. Compute the Fourier coefficients a_0 , a_1 , a_2 , b_1 and b_2 for f(x) tabulated below: (07 Marks)

13 2 24 | 28 | 26 | 18

Find Fourier transform of, 2

$$f(x) = \frac{1}{2a} |x| \le a$$

$$= 0 |x| > a$$
(06 Marks)

Find Fourier cosine transform of e^{-ax} , $a \ge 0$, hence find $\int_{a}^{\infty} \frac{\cos \alpha x}{a^2 + \alpha^2} dx$. (07 Marks)

Find the inverse Fourier sine transform of $\frac{1}{2}e^{-as}$. (07 Marks)

a. Form the second order partial differential equation of z = xf(ax + by) + g(ax + by). (06 Marks) 3

b. Solve: $(y + zx)z_x - (x + yz)z_y = x^2 - y^2$. (07 Marks)

c. Solve: $3u_x + 2u_y = 0$, given $u(x, 0) = 4e^{-x}$ using method of separation of variables.

(07 Marks)

With suitable assumptions, derive one dimensional equation for heat flow. (06 Marks)

b. Solve: $\frac{\partial^2 u}{\partial t^2} = c^2 u_{xx}$ by the method of separation of variables. (07 Marks)

c. Solve $u_{xx} + u_{yy} = 0$, for 0 < x < a, 0 < y < b and u(x, 0) = 0; u(x, b) = 0; u(0, y) = 0; (07 Marks) u(a, y) = f(y).

PART - B

a. Find the third approximate root of $xe^x - 2 = 0$, by Regula Falsi method. (06 Marks)

b. Using Gauss Seidel method of iteration, find a, b, c (4^{th} iteration values), given 5a - b = 9,

a-5b+c=-4, b-5c=6 taking $\left(\frac{9}{5},\frac{4}{5},\frac{6}{5}\right)$ as first approximation. (07 Marks)

Find all the eigen values and the eigen vector corresponding to smallest eigen value of:

$$\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$
 (07 Marks)

06MAT31

6 a. Given the following table of x and f(x), fit a Lagrangian polynomial and hence find f(1) and f(4). (06 Marks)

 x
 -1
 0
 2
 3

 f(x)
 -8
 3
 1
 2

b. Using Newton's dividend different formula, find f(2, 5) given:

	x	-3	-1	0	3	5
1	f(x)	-30	-22	-12	330	3458

(07 Marks

- c. Tabulate the values $y = \log_e x$, $4 \le x \le 5.2$, in steps of 0.2 and find $\int_4^{5.2} \log_e x \, dx$ using Simpons' $\frac{3}{8}$ rule. (07 Marks)
- 7 a. Derive eulers' equation for extremal value in the form $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$. (06 Marks)
 - b. Determine the plane curve down which a particle will slide down without friction from $A(x_1, y_1)$ to $B(x_2, y_2)$ in shortest time. (07 Marks)
 - c. The curve 'C' joining the two points $A(x_1, y_1)$ to $B(x_2, y_2)$ is rotated about x-axis, find equation of 'C' such that the solid of resolution has minimum surface area. (07 Marks)
- 8 a. Find $z(e^{-an} \sin n\theta)$ and $z(n \cos n\theta)$. (06 Marks)
 - b. Find z^{-1} of $\left\{ \frac{4z^2 2z}{z^3 5z^2 + 8z 4} \right\}$. (07 Marks)
 - c. Solve: $u_{n+2} + 2u_{n+1} + u_n = n$ given $u_0 = u_1 = 0$. (07 Marks)

* * * * *